



(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

### **SUMMER – 2019 EXAMINATION** MODEL ANSWER

22321 **Subject Code: Subject: Principles of Database** 

### **Important Instructions to examiners:**

- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills).
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the cardidate's answers and model answer.
- 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

| Q. | Sub  | Answer                                                                      | Marking   |
|----|------|-----------------------------------------------------------------------------|-----------|
| No | Q.N. |                                                                             | Scheme    |
| -  |      |                                                                             |           |
| 1. |      | Attempt any FIVE of the following:                                          | 10        |
|    | (a)  | List any four DBMS softwares.                                               | 2M        |
|    |      | (Note: Any four valid DBMS software can be considered)                      |           |
|    | Ans. | List of DBMS software are the followings:                                   |           |
|    |      | i. Oracle RDBMS                                                             | Any       |
|    |      | ii. IBM DB2                                                                 | four      |
|    |      | iii, Microsoft SQL Server                                                   | $^{1/2}M$ |
|    |      | iv. MySQL                                                                   | each      |
|    |      | v. MS Access                                                                |           |
|    |      | vi. SQLite                                                                  |           |
|    |      | vii. PostgreSQL                                                             |           |
|    |      | viii. MongoDB                                                               |           |
|    |      | ix. SQL Developer                                                           |           |
|    |      | x. SAP Sybase SE                                                            |           |
|    | (b)  | Define Domain and Attribute.                                                | 2M        |
|    | Ans. | A <b>Domain</b> is defined as the set of all unique values permitted for an | Each      |
|    |      | attribute.                                                                  | definitio |
|    |      | <b>Attributes</b> are the descriptive properties owned by each entity of an | n 1M      |
|    |      | ·                                                                           |           |





(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

# **SUMMER – 2019 EXAMINATION MODEL ANSWER**

22321 **Subject Code: Subject: Principles of Database** 

|      | entity set.                                                                    | each                     |
|------|--------------------------------------------------------------------------------|--------------------------|
| (c)  | List and draw any four symbols used in ER-Model.                               | 2M                       |
| Ans. | Different symbols used in ER-Model are the following:                          |                          |
|      | Represents Entity                                                              |                          |
|      | Represents Attribute                                                           |                          |
|      | Represents Relationship                                                        | Any                      |
|      | Links Attribute(s) to entity set(s) or<br>Entity set(s) to Relationship set(s) | four<br>symbol           |
|      | Represents Multivalued Attributes                                              | <sup>1/2</sup> M<br>each |
|      | Represents Derived Attributes                                                  |                          |
|      | Represents Total Participation of Entity                                       |                          |
|      | Represents Weak Entity                                                         |                          |
|      | Represents Weak Relationships                                                  |                          |
|      | Represents Composite Attributes                                                |                          |
|      | Represents Key Attributes / Single Valued Attributes                           |                          |
| (d)  | Define Constraint.                                                             | 2M                       |
| Ans. | Constraints are the rules enforced on the data columns of a table.             |                          |
|      | These are used to limit the type of data that can go into a table. This        |                          |
|      | ensures the accuracy and reliability of the data in the database.              | Definitio                |
|      | Constraints could be either on a column level or a table level. The            | n 2M                     |
|      | column level constraints are applied only to one column, whereas the           |                          |
|      | table level constraints are applied to the whole table.                        |                          |
| (e)  | Define Database. List any two advantages of database system.                   | 2M                       |
| Ans. | A database is an organized collection of data so that it can be easily         |                          |
|      | accessed, managed and updated.                                                 | n 1M                     |
|      | Advantages of database system are the following:                               |                          |
|      | 1. Controlling Redundancy of data in a centralized system of                   | Any two                  |
|      | DBMS                                                                           | advanta                  |
|      | 2. Integrity of data can be enforced in case of database system by             | $ges^{1/2}M$             |
|      | enforcing constraints                                                          | each                     |





(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

# **SUMMER – 2019 EXAMINATION MODEL ANSWER**

22321 **Subject Code: Subject: Principles of Database** 

|    |            | <ol> <li>Inconsistency of data can be avoided by reducing duplicacy or redundancy</li> <li>Data can be shared by multiple applications in centralized DBMS</li> <li>Standards can be enforced in DBMS is a central system by enforcing standards easily at Company level, Department level, National level or International level.</li> <li>Restricting unauthorized access among multiple users when sharing of data takes place in a database.</li> <li>Providing Backup and Recovery facilities is provide by DBMS for recovering from hardware or software failures.</li> </ol>                                       |                                      |
|----|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|
|    | <b>(f)</b> | Define database model.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2M                                   |
|    | Ans.       | Definition of database model:  A database model is a type of data model that determines the logical structure of a database. It also fundamentally determines in which manner data can be stored, organized and manipulated.                                                                                                                                                                                                                                                                                                                                                                                              | Definitio<br>n 2M                    |
|    | (g)        | List advantages of Normalization.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2M                                   |
|    | Ans.       | <ol> <li>List of Advantages of Normalization are the following:</li> <li>More efficient data structure.</li> <li>Avoid redundant fields or columns.</li> <li>More flexible data structure i.e. we should be able to add new rows and data values easily</li> <li>Better understanding of data.</li> <li>Ensures that distinct tables exist when necessary.</li> <li>Easier to maintain data structure i.e. it is easy to perform operations and complex queries can be easily handled.</li> <li>Minimizes data duplication.</li> <li>Close modeling of real world entities, processes and their relationships.</li> </ol> | Any two<br>advanta<br>ges 1M<br>each |
| 2. | ( )        | Attempt any THREE of the following:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 12                                   |
|    | (a)        | Define data abstraction. Explain the levels of data abstraction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4M                                   |
|    | Ans.       | <ul> <li>with neat diagram.</li> <li>Data abstraction is defined as</li> <li>Suppression of details of data organization and storage</li> <li>Highlighting of the essential features for an improved understanding of data</li> <li>The characteristic that allow program data independence and program operation independence is called data abstraction.</li> </ul>                                                                                                                                                                                                                                                     | Definitio<br>n 1M                    |





(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

# SUMMER – 2019 EXAMINATION MODEL ANSWER

22321 **Subject Code: Subject: Principles of Database** Three levels of abstraction are: **Physical level**: This is the lowest level of data abstraction. It Levels describes how data is actually stored in database. The complex data 2Mstructure details is described at this level. Logical level: This is the middle level of 3-level data abstraction architecture. It describes what data is stored in database and the relationships among the data. View level: This is highest level of data abstraction. This level describes the user interaction with database system. Diagram View 1 *1M* logical le Three Levels of data abstraction Distinguish between network database model and relational **4M** (b) database model. Network database model Relational database model Ans. Sr. No. Relationship hetween Relationship between 1 records is expressed in the records is represented by a form of pointers or links relation that contains a key for each record involved in Any four the relationship. points Many to many relationship Many to many relationship 2 1M each can also be implemented can be easily implemented Relationship implementation 3 Record relationship is very easy through the use implementation is very complex due to use of of a key or composite key pointers fields





(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

# SUMMER – 2019 EXAMINATION MODEL ANSWER

| 4 Network model is useful for representing such records which have many to many relationships  5 In Network model also the record relations are physical  6 Example:  6 Example:  8 Pook 2  8 Pook 3  101 Abc 89.8  C)  C)  C)  C)  C)  C)  C)  C)  C)  C                                                                                                     |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>concepts</li> <li>Sub Class and Super Class</li> <li>Specialization and Generalization</li> <li>Union or Category</li> <li>Aggregation</li> <li>These concepts are used when they comes in EER schema and the resulting schema diagrams called as EER Diagrams.</li> <li>For example: Square, Circle, Triangle are the sub class of Shape</li> </ul> |





(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

# SUMMER – 2019 EXAMINATION MODEL ANSWER

|      | Typing speed                                                                                                                                                                                                                                                                                                                                                                                                                     | type Engineer' nician' Eng type                                                                                                                            | Diagram<br>1M                    |
|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|
| (d)  | Compare file system and database                                                                                                                                                                                                                                                                                                                                                                                                 | So system                                                                                                                                                  | 4M                               |
| Ans. | File system  1. File processing don't contain any self describing feature and neither posses metadata.  2. In file processing, if any changes to the structure of a file may require changing all programs that access the file  3. File processing system don't support multiple views.  4. It is not possible to share data and multi user transaction simultaneously among concurrent users in case of file processing system | Database system  1. Presence of Self-describing nature of a database system and Metadata.  2. In database system, the structure of data files is stored in | Any<br>four<br>points<br>1M each |





(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

# **SUMMER – 2019 EXAMINATION MODEL ANSWER**

| Subject: Principles of Database | Subject Code: 22321 |  |
|---------------------------------|---------------------|--|
|---------------------------------|---------------------|--|

|    |      | 5. The traditional file approach, 5. Controlling Redundancy is                                                        |                  |
|----|------|-----------------------------------------------------------------------------------------------------------------------|------------------|
|    |      | each group independently keeps one of most important feature to                                                       |                  |
|    |      | their own file. use DBMS                                                                                              |                  |
|    |      |                                                                                                                       |                  |
|    |      |                                                                                                                       |                  |
| 3. |      | Attempt any THREE of the following:                                                                                   | 12               |
|    | (a)  | Explain any four Codd's rules.                                                                                        | <b>4M</b>        |
|    | Ans. | Codd's rules:                                                                                                         |                  |
|    |      | Rule 1: The information rule                                                                                          | 4                |
|    |      | According to E.F. codd's first rule, the whole data has to be presented to the user should be in the form of table.   | Any              |
|    |      | to the user should be in the form of table.                                                                           | four<br>rules    |
|    |      | Rule 2 : Guaranteed Access Rule                                                                                       | Tutes<br>1M each |
|    |      | Whole data should be available or accessible to the user without any                                                  | IM each          |
|    |      | ambiguity. The ambiguity can be avoided only through the perfect                                                      |                  |
|    |      | combination of the table name, primary key, and column name.                                                          |                  |
|    |      | combination of the table name, printary acy, and column name.                                                         |                  |
|    |      | Rule 3: Systematic treatment of null values                                                                           |                  |
|    |      | The null values i.e. absence of the values in the table should be                                                     |                  |
|    |      | treated properly. The table should allow a field to remain empty. This                                                |                  |
|    |      | is not applicable to primary keys. Key columns cannot have null                                                       |                  |
|    |      | values.                                                                                                               |                  |
|    |      |                                                                                                                       |                  |
|    |      | Rule 4: Active on-line catalog based on the relational model                                                          |                  |
|    |      | Fourth rule specifies need of dynamic on-line catalog based on the                                                    |                  |
|    |      | relational model. There are certain system tables that stores the                                                     |                  |
|    |      | database definition should be present. The data accessing tools should                                                |                  |
|    |      | be used to access the database structure information.                                                                 |                  |
|    |      |                                                                                                                       |                  |
|    |      | Rule 5: The comprehensive data sub language rule: The system                                                          |                  |
|    |      | must support at least one relational language that Has a linear syntax                                                |                  |
|    |      | Can be used both interactively and within application programs,                                                       |                  |
|    |      | Supports data definition operations (including view definitions), data                                                |                  |
|    |      | manipulation operations (update as well as retrieval), security and                                                   |                  |
|    |      | integrity constraints, and transaction management operations (begin,                                                  |                  |
|    |      | commit, and rollback).                                                                                                |                  |
|    |      | Pula 6 • The view underting rule: All views these can be underted                                                     |                  |
|    |      | <b>Rule 6 : The view updating rule</b> : All views those can be updated theoretically, must be updated by the system. |                  |
|    |      | medically, must be updated by the system.                                                                             |                  |





(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

# **SUMMER – 2019 EXAMINATION MODEL ANSWER**

| Subject: Prin | ciples of Database Subject Code: 22                                                                                                                                                                                                                                                                                                                                                                                                            | 2321               |
|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
|               | Rule 7: High-level insert, update, and delete: A database must support high-level insertion, updation, and deletion. This must not be limited to a single row, that is, it must also support union, intersection and minus operations to yield sets of data records                                                                                                                                                                            |                    |
|               | Rule 8: Physical data independence: Changes to the physical level (how the data is stored, whether in arrays or linked lists etc.) must not require a change to an application based on the structure.                                                                                                                                                                                                                                         |                    |
|               | Rule 9: Logical data independence: Changes to the logical level (tables, columns, rows, and so on) must not require a change to an application based on the structure.  Rule 10: Integrity independence: Integrity constraints must be specified separately from application programs and stored in the catalog. It must be possible to change such constraints as and when appropriate without unnecessarily affecting existing applications. |                    |
|               | Rule 11: Distribution independence: The distribution of portions of the database to various locations should be invisible to users of the database. Existing applications should continue to operate successfully: when a distributed version of the DBMS is first introduced; and when existing distributed data are redistributed around the system.                                                                                         |                    |
|               | <b>Rule 12: The non subversion rule</b> : If the system provides a low-level (record-at-a-time) interface, then that interface cannot be used to subvert the system, for example, bypassing a relational security or integrity constraint.                                                                                                                                                                                                     |                    |
| (b)           | Describe functional dependency with example.                                                                                                                                                                                                                                                                                                                                                                                                   | 4M                 |
| Ans.          | (Note: Any other example shall be considered) A functional dependency occurs when one attribute in a relation                                                                                                                                                                                                                                                                                                                                  |                    |
| 1 1113.       | uniquely determine another attribute.                                                                                                                                                                                                                                                                                                                                                                                                          |                    |
|               | (OR)                                                                                                                                                                                                                                                                                                                                                                                                                                           |                    |
|               | A relation say R attribute X is functionally dependent on attribute Y if every value in X in the relation has exactly one value of Y in the given relation.                                                                                                                                                                                                                                                                                    | Descript<br>ion 2M |
|               | The functional dependency is represented as $X \rightarrow Y$ , which specifies Y is functionally dependent on X or X attribute functionally determine                                                                                                                                                                                                                                                                                         |                    |





(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

# SUMMER – 2019 EXAMINATION MODEL ANSWER

| <b>Subject: Principles of Database</b> | Subject Code: | 22321 |
|----------------------------------------|---------------|-------|
|----------------------------------------|---------------|-------|

|             | the attribute Y.                                                                                                   |                 |
|-------------|--------------------------------------------------------------------------------------------------------------------|-----------------|
|             | Example:                                                                                                           |                 |
|             | Consider table : Employee( Emp_Id, Emp_Name, Emp_Address)                                                          |                 |
|             | Here Emp_Id attribute can uniquely identify the Emp_Name attribute                                                 | Example         |
|             | of employee table because if we know the Emp_Id, we can tell that employee name associated with it.                | 2M              |
|             | Functional dependency can be written as: Emp_Id → Emp_Name                                                         |                 |
| (c)<br>Ans. | Explain different types of attributes.  Types of Attributes:                                                       | 4M              |
| 7 113.      | 1) Simple attributes: Attributes that cannot be subdivided (i.e are                                                |                 |
|             | atomic) into subparts are called as simple attributes. E.g. Enroll no, RollNo                                      |                 |
|             |                                                                                                                    |                 |
|             | <b>2)</b> Composite Attributes: The attributes which can be divided into subparts are called composite attributes. | Any<br>four     |
|             | E.g. attribute <b>name</b> could be structured as a composite attribute                                            | types           |
|             | consisting of first_name, middle_name and last_name                                                                | with<br>correct |
|             | 3) Single Valued Attributes:                                                                                       | explanat        |
|             | The attribute has single value for a particular entity called as single valued attribute.                          | ion 1M<br>each  |
|             | E.g: Student_id                                                                                                    | eacn            |
|             | 4) Multivalued Attributes:                                                                                         |                 |
|             | The attribute has set of values for a specific entity called as multi                                              |                 |
|             | valued attribute. E.g: Phone no is multivalued attribute because employee may have                                 |                 |
|             | zero, one or several phone no.                                                                                     |                 |
|             | 5) Derived Attribute:                                                                                              |                 |
|             | The value for this type of attribute can be derived from the values of other related attributes or entities.       |                 |
|             | E.g. Customer entity has attribute age and date_of_birth. We                                                       |                 |
|             | calculate age from date_of_birth and current_date.                                                                 |                 |
|             | Here age is derived attribute and date_of_birth is base or stored attribute                                        |                 |





(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

# SUMMER – 2019 EXAMINATION MODEL ANSWER

| (d)  | 6) Stored Attribute: The stored attributes are such attributes which are already stored in the database and from which the value of another attribute is derived is called stored attribute. For example: date_of_birth is a stored attribute from which age can be derived. 7) Null Attribute: An attribute takes a null value when an entity does not have a value for it. Null can indicate "not applicable"- that is value does not exist for the entity. E.g apartment_no  Explain different operations performed with Data Definition                                                                                                                                                          | 4M                                 |
|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|
| Ans. | Language.  DDL Operations:  1. Create 2. Alter 3. Drop 4. Rename 5. Truncate 1) Create: It's a DDL statement of SQL and is used to create a table in the database. It creates an empty structure of the table.  Syntax:  Create table  (column1 datatype[(size]), column2 datatype[(size]), column3 datatype[(size)],);  Example:  Create table employee (empno number(5), ename varchar2(20),Salary number(8,2));  2) Alter: It is used to add new attributes or to modify the existing attribute in the table structure.  Syntax for add option: alter table add(columnName1 datatype(size) columnName2 datatyp(size)  columnNameNdatatyp(size) );  Example: alter table emp add(sal number(8,2)); | Any 4<br>operatio<br>ns 1M<br>each |





(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

# SUMMER – 2019 EXAMINATION MODEL ANSWER

| Subj | ject: Prin | ciples of Database Subject Code: 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 321                |
|------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
|      |            | Syntax for modify option: alter table modify ( <columnname1><data type="">(<size>)); Example: alter table emp modify sal number(10,2);  3) Rename: This command is used to rename a table, view, sequence or a synonym. Syntax of Rename command: rename <oldtable_name> to <newtable_name>; Example: rename employee to employee_details;  4) Drop: The DROP command removes a table from the database. All the tables' rows, indexes and privileges will also be removed. No DML triggers will be fired. The operation cannot be rolled back. Syntax: drop table ; Example: drop table emp;  5) Truncate: Truncate command is used to remove all rows from a table and to release the storage space used by the table keeping the table definition intact. Syntax: truncate table ; Example: truncate table emp;</newtable_name></oldtable_name></size></data></columnname1> |                    |
| 4.   |            | Attempt any THREE of the following:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 12                 |
|      | (a)        | Explain BCNF with example.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4M                 |
|      | Ans.       | (Note: Any other example shall be considered) BCNF:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                    |
|      | Alls.      | Boyce Codd Normal Form (BCNF) is considered a special condition of third Normal form. A table is in BCNF if every determinant is a candidate key. A table can be in 3NF but not in BCNF. This occurs when a non key attribute is a determinant of a key attribute                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Explana<br>tion 2M |
|      |            | Example of BCNF:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                    |

one department.

Let's assume there is a company where employees work in more than





(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

# SUMMER – 2019 EXAMINATION MODEL ANSWER

|      | EMPLOYEE(EMP_ID,EMP_COUNTRY,EMP_DEPT, DEPT_TYPE,EMP_DEPT_NO)       |          |
|------|--------------------------------------------------------------------|----------|
|      |                                                                    | Example  |
|      | In the above table Functional dependencies are as follows:         | 2M       |
|      | $1.EMP\_ID \rightarrow EMP\_COUNTRY$                               |          |
|      | $2.EMP\_DEPT \rightarrow \{DEPT\_TYPE, EMP\_DEPT\_NO\}$            |          |
|      | Candidate key: {EMP-ID, EMP-DEPT}                                  |          |
|      | The table is not in BCNF because neither EMP_DEPT nor              |          |
|      | EMP_ID alone are keys.                                             |          |
|      | To convert the given table into BCNF, we decompose it into three   |          |
|      | tables:                                                            |          |
|      | 1.EMP_COUNTRY table: EMP_ID $\rightarrow$ EMP_COUNTRY              |          |
|      | <b>2.EMP_DEPT table:</b> EMP_DEPT — {DEPT_TYPE,                    |          |
|      | EMP_DEPT_NO}                                                       |          |
|      | 3. EMP_DEPT_MAPPING table: EMP_ID, EMP_DEPT                        |          |
|      |                                                                    |          |
|      | Functional dependencies:                                           |          |
|      | 1. EMP_ID → EMP_COUNTRY                                            |          |
|      | 2. EMP_DEPT $\rightarrow$ {DEPT_TYPE, EMP_DEPT_NO}                 |          |
|      | Candidate keys:                                                    |          |
|      | For the first table: EMP ID                                        |          |
|      | For the second table: EMP DEPT                                     |          |
|      | For the third table: {EMP_ID, EMP_DEPT}                            |          |
|      | Now, this is in BCNF because left side part of both the functional |          |
|      | dependencies is a key.                                             |          |
| (b)  | Explain client/server database system.                             | 4M       |
| Ans. |                                                                    | 11/1     |
|      |                                                                    |          |
|      |                                                                    | Correct  |
|      |                                                                    | explanat |
|      | Client Server with database                                        | ion 4M   |
|      | Client/Server Database System                                      |          |





(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

# SUMMER – 2019 EXAMINATION MODEL ANSWER

| Subject: Prin | ciples of Database                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Subject Code:                                                                                                                                                 | 22321         |
|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
|               | <ol> <li>It has two logical parts –client and server.</li> <li>Computer networking allows some task to be system and some tasks on client syst development of client server architecture.</li> <li>Server is the machine which serves to the client access, printing, and database access. It is database tables optimally among mu concurrently request the server for the same of the clients are the machines which requests server.</li> <li>There are different types of client/server architecture         <ul> <li>Two tier architecture.</li> </ul> </li> <li>In two tier architecture, client systems directly servers whereas in three tier architecture, there layer which acts as application server to receive from client machine to database server and violents.</li> </ol> | ents. t machine such as filused to manage that used to manage that tiple clients who data. for the service to the nitecture such as a paper and send requests | e<br>e<br>e   |
| (c)<br>Ans.   | Explain terms primary key and candidate key Primary Key:  A primary key is an attribute in Relation that u rows in relation. A Primary key does not hold duplicate values.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | iniquely identifies th                                                                                                                                        | d <i>Each</i> |
|               | OR A key which is selected by the designer to unique is called as Primary key. A primary key can values and it can never contain null values inside                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | not contain duplicat                                                                                                                                          |               |
|               | Example: In a Student table(Rollno,Name,Percentage), Respectively.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Rollno is the primar                                                                                                                                          | Each          |
|               | Candidate key: In a relation there may be a key or combin uniquely identify the record. Such a key is called Example:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | d as Candidate key.                                                                                                                                           | IM 1          |
|               | Consider a Student table (Rollno, Name, Pero and (Name) both are unique then both are identified                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <b>O</b> //                                                                                                                                                   | /             |





(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

# **SUMMER – 2019 EXAMINATION MODEL ANSWER**

22321 **Subject Code: Subject: Principles of Database** 

| J           | J                                                                                                                                                                                                                                                                                                                                                                                         |                                              |
|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|
|             | OR Consider a Student table (Rollno, Name, Percentage), if (Rollno,                                                                                                                                                                                                                                                                                                                       |                                              |
|             | Name) is unique, then (Rollno, Name) can be a candidate key if and only if Name and Rollno individually are not unique.                                                                                                                                                                                                                                                                   |                                              |
| (d)<br>Ans. | Explain entity integrity constraint with example. Entity integrity constraint:                                                                                                                                                                                                                                                                                                            | 4M                                           |
|             | 1) Unique key constraint: It avoids the duplication of values within the rows in table. It allows null values.  Syntax:  Create table <table_name>   (column name1 datatype(size), column_name2 datatype(size) constraint <constraint_name> unique,</constraint_name></table_name>                                                                                                        | Each<br>constrai<br>nt<br>explanat<br>ion 1M |
|             | column_name n datatype(size) );  Example: create table dept (deptno number(5) constraint dept_deptno_uk unique, dname varchar2(20), loc varchar2(20));                                                                                                                                                                                                                                    | Each<br>example<br>1M                        |
|             | 2) Primary key constraint: Primary key constraint can be assigned on one or more columns in a table used to uniquely identifies the each row in table. It avoids duplication of rows and do not allow null values.  Syntax:  Create table <table_name> (column name1 datatype(size), column_name2 datatype(size) constraint <constraint_name> primary key,</constraint_name></table_name> |                                              |
|             | column_name n datatype(size) );  Example: create table dept (deptno number(5) constraint dept_deptno_pk primary key, dname varchar2(20), loc varchar2(20));                                                                                                                                                                                                                               |                                              |



22321

**Subject Code:** 



5.

(a)

Ans.

**Subject: Principles of Database** 

### MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

### SUMMER – 2019 EXAMINATION MODEL ANSWER

| (e)  | Describe centralized database system with example.                                  | 4M       |
|------|-------------------------------------------------------------------------------------|----------|
|      | (Note: Any other example shall be considered).                                      |          |
| Ans. | Centralized Database System:                                                        |          |
|      | 1. A centralized database consists of a single data server into which               |          |
|      | all data are stored and from which all data are retrieved. All the                  |          |
|      | data reside at a single location and all applications must retrieve                 |          |
|      | all data from that location.                                                        |          |
|      | 2. The centralized database system consists of a single processor                   | Descript |
|      | together with its associated data storage devices and other                         | ion 2M   |
|      | peripherals. It is physically confined to a single location.                        |          |
|      | 3. Data can be accessed from the multiple sites with the use of a                   |          |
|      | computer network while the database is maintained at the central                    |          |
|      | site                                                                                |          |
|      | Following are the advantages of centralised database system:                        |          |
|      | <ul> <li>The data integrity is maximized</li> </ul>                                 |          |
|      | <ul> <li>The data redundancy is minimal.</li> </ul>                                 |          |
|      | <ul> <li>Centralized database is much more secure.</li> </ul>                       |          |
|      | <ul> <li>Data is easily portable because it is stored at the same place.</li> </ul> |          |
|      | <ul> <li>The centralized database is cheaper than other types of</li> </ul>         |          |
|      | databases as it requires less power and maintenance.                                |          |
|      |                                                                                     |          |
|      | Example:                                                                            |          |
|      | Consider a company developing a project. As the project consist of                  |          |
|      | many different types of information like documents, plans, diagrams,                |          |
|      | etc. Instead of having it stored on every project member's system it                | Example  |

# into 2NF and 3NF Table: (supplier\_no, supplier\_name, supplier\_city, order\_no, order\_quantity, order\_amount, product\_code, product\_name) Given Table Schema - (supplier\_no, supplier\_name, supplier\_city, order\_no, order\_quantity, order\_amount, product\_code, product\_name) Second Normal Form (2NF): To convert it into 2NF, We have to decompose the given table into two tables with fully functional dependencies and establishing a

can be stored in a database on server which can act as a centralized

database from which all the project members will assess the

Consider a single table consisting following columns. Convert it

information acting as clients.

**Attempt any TWO of the following:** 

2M

12

**6M** 

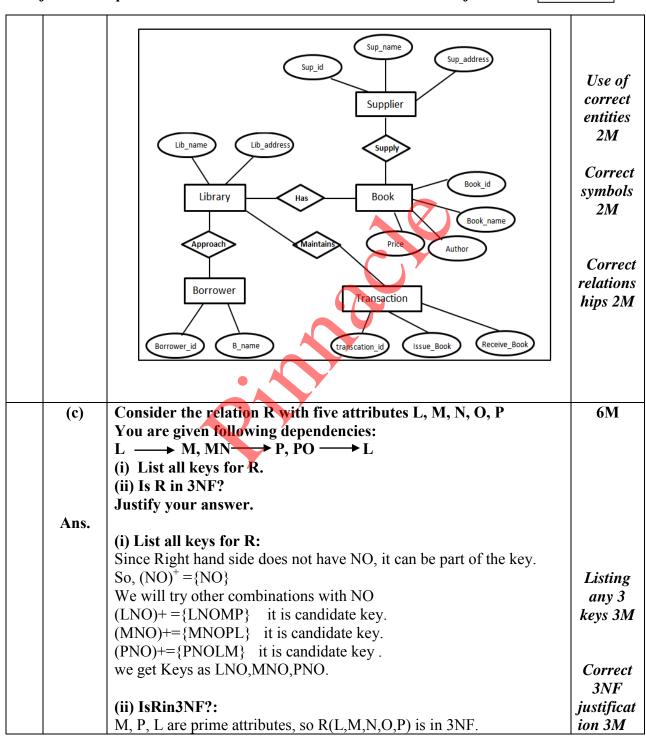




(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

# SUMMER – 2019 EXAMINATION MODEL ANSWER

| Subject: 1111 | cipies of Database Subject Code                                                                                                                                                                                                                                                                                                                                                                                                                                                         |        |
|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
|               | referential integrity constraint relationship among the two tables. <b>Table 1- Supplier Details</b> (supplier_no,supplier_name,supplier_city,order_no) <b>Table 2 - Order Details</b> (order_no, order_ quantity, order_amount, product_code, product_name)  Now the above two tables are in 2NF.                                                                                                                                                                                      | 2NF 3M |
|               | Third Normal Form (3NF): To convert the above tables in 3NF, We have to decompose them in three tables satisfying the transitive dependencies property.  Table 1- Supplier Details (supplier_no ,supplier_name,supplier_city)  Table 2- Product Details (product_code,product_name)  Table 3- Transaction(Order) Details (order_no, product_code,supplier_no, order_quantity, order_amount)  Hence the above three tables are satisfying Transitive dependencies  Thus they are in 3NF. | 3NF 3M |
| (b) Ans.      | Draw ER diagram of library management system in which library maintain the data of books, borrowers, issue return details, fine collection, supplier of books etc. Assume suitable data and display the relationship among entities.                                                                                                                                                                                                                                                    | 6M     |






(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

### SUMMER – 2019 EXAMINATION MODEL ANSWER





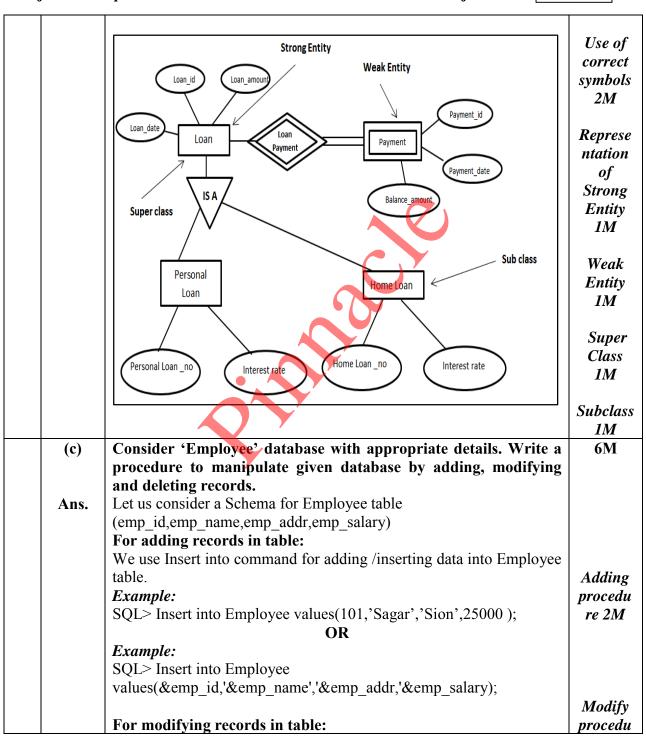


(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

# SUMMER – 2019 EXAMINATION MODEL ANSWER

| Subj |      | ciples of Database                                                                                                                                               |                       |  |
|------|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|--|
| 6.   | (a)  | Attempt any TWO of the following: Consider the following schemas: (i) Dept (Dept_no, Dept_name, Dept-loc) (ii) Staff (Staff id, Staff name, Dept no, Joint date) | 12<br>6M              |  |
|      |      | Draw and explain parent-child relationship for above schemas                                                                                                     |                       |  |
|      |      | and find out foreign key with justification.                                                                                                                     |                       |  |
|      | Ans. |                                                                                                                                                                  |                       |  |
|      |      | Parent – Child Relationship Diagram for given Schema is as follows:                                                                                              |                       |  |
|      |      | Parent table: Dept                                                                                                                                               |                       |  |
|      |      |                                                                                                                                                                  |                       |  |
|      |      | Dept_no Dept_name Dept_loc                                                                                                                                       |                       |  |
|      |      | 1: N                                                                                                                                                             | Diagram               |  |
|      |      | Child table: Staff                                                                                                                                               | <i>3M</i>             |  |
|      |      | Staff_id Staff_name Dept_no Join_date                                                                                                                            |                       |  |
|      |      |                                                                                                                                                                  |                       |  |
|      |      |                                                                                                                                                                  |                       |  |
|      |      | Foreign key                                                                                                                                                      |                       |  |
|      |      | Fig: Parent Child Relationship diagram                                                                                                                           | Identific<br>ation of |  |
|      |      | Foreign key: Dept no is Foreign key for table Staff                                                                                                              | Foreign<br>key 1M     |  |
|      |      | Justification:                                                                                                                                                   |                       |  |
|      |      | As per above schemas, Dept table is parent table and Staff table is                                                                                              |                       |  |
|      |      | child table.                                                                                                                                                     |                       |  |
|      |      | Dept_no is primary key for Dept table.                                                                                                                           | ,<br>Justifica        |  |
|      |      | There exist Dept_no as a common attribute in both the tables Dept and Staff.                                                                                     | tion 2M               |  |
|      |      | Staff id is primary key for Staff table.                                                                                                                         | 21,1                  |  |
|      |      | So, Dept no is foreign key for table Staff.                                                                                                                      |                       |  |
|      | (b)  | Draw enhanced ER diagram for loan payment system. Consider                                                                                                       | 6M                    |  |
|      |      | the following entities:                                                                                                                                          |                       |  |
|      |      | (i) Loan (Loan_id, Loan_amount, Loan_date)                                                                                                                       |                       |  |
|      |      | (ii) Payment (payment_id, Payment_date, Balance_amount)                                                                                                          |                       |  |
|      |      | (iii) Personal Loan (Personal Loan_no, Interest rate)                                                                                                            |                       |  |
|      |      | (iv) Home Loan (Home Loan_no, Interest rate) Show strong entity set, weak entity set, super class and sub class.                                                 |                       |  |
|      | Ans. | Show strong energy set, weak energy set, super class and sub class.                                                                                              |                       |  |
| -    |      | J                                                                                                                                                                | L                     |  |






(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

### SUMMER – 2019 EXAMINATION MODEL ANSWER







(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

# SUMMER – 2019 EXAMINATION MODEL ANSWER

| We use update command for modifying data of Employee table.  *Example: SQL> update Employee set salary=30000 where emp_id=3;                   | re 2M                      |
|------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
| For deleting records from table: We use delete command for deleting data of Employee table.  Example: SQL>delete from Employee where emp_id=4; | Delete<br>procedu<br>re 2M |

